3.546 \(\int \frac{c+d x+e x^2+f x^3}{(a+b x^4)^{3/2}} \, dx\)

Optimal. Leaf size=275 \[ \frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{b} c-\sqrt{a} e\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{4 a^{5/4} b^{3/4} \sqrt{a+b x^4}}+\frac{e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}-\frac{a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt{a+b x^4}}-\frac{e x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )} \]

[Out]

-(e*x*Sqrt[a + b*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) - (a*f - b*x*(c + d*x + e*x^2))/(2*a*b*Sqrt[a + b
*x^4]) + (e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)
/a^(1/4)], 1/2])/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) + ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(
a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*b^(3/4)*Sqrt[a
 + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.117198, antiderivative size = 275, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {1854, 1198, 220, 1196} \[ \frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{b} c-\sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} b^{3/4} \sqrt{a+b x^4}}+\frac{e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}-\frac{a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt{a+b x^4}}-\frac{e x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(3/2),x]

[Out]

-(e*x*Sqrt[a + b*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) - (a*f - b*x*(c + d*x + e*x^2))/(2*a*b*Sqrt[a + b
*x^4]) + (e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)
/a^(1/4)], 1/2])/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) + ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(
a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*b^(3/4)*Sqrt[a
 + b*x^4])

Rule 1854

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[((a*Coeff[Pq, x, q] -
 b*x*ExpandToSum[Pq - Coeff[Pq, x, q]*x^q, x])*(a + b*x^n)^(p + 1))/(a*b*n*(p + 1)), x] + Dist[1/(a*n*(p + 1))
, Int[Sum[(n*(p + 1) + i + 1)*Coeff[Pq, x, i]*x^i, {i, 0, q - 1}]*(a + b*x^n)^(p + 1), x], x] /; q == n - 1] /
; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{c+d x+e x^2+f x^3}{\left (a+b x^4\right )^{3/2}} \, dx &=-\frac{a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt{a+b x^4}}-\frac{\int \frac{-c+e x^2}{\sqrt{a+b x^4}} \, dx}{2 a}\\ &=-\frac{a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt{a+b x^4}}+\frac{e \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx}{2 \sqrt{a} \sqrt{b}}+\frac{\left (c-\frac{\sqrt{a} e}{\sqrt{b}}\right ) \int \frac{1}{\sqrt{a+b x^4}} \, dx}{2 a}\\ &=-\frac{e x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{a f-b x \left (c+d x+e x^2\right )}{2 a b \sqrt{a+b x^4}}+\frac{e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}+\frac{\left (c-\frac{\sqrt{a} e}{\sqrt{b}}\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} \sqrt [4]{b} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0540039, size = 116, normalized size = 0.42 \[ \frac{3 b c x \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^4}{a}\right )+2 b e x^3 \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};-\frac{b x^4}{a}\right )-3 a f+3 b c x+3 b d x^2}{6 a b \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(3/2),x]

[Out]

(-3*a*f + 3*b*c*x + 3*b*d*x^2 + 3*b*c*x*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)] + 2
*b*e*x^3*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^4)/a)])/(6*a*b*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 250, normalized size = 0.9 \begin{align*} -{\frac{f}{2\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+e \left ({\frac{{x}^{3}}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}-{{\frac{i}{2}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}} \right ) +{\frac{d{x}^{2}}{2\,a}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+c \left ({\frac{x}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{1}{2\,a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x)

[Out]

-1/2*f/b/(b*x^4+a)^(1/2)+e*(1/2*x^3/a/((x^4+1/b*a)*b)^(1/2)-1/2*I/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/
2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))
^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)))+1/2*d/(b*x^4+a)^(1/2)/a*x^2+c*(1/2*x/a/((x^4+1/b*a)*b)^(1
/2)+1/2/a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^
(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{f x^{3} + e x^{2} + d x + c}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/(b^2*x^8 + 2*a*b*x^4 + a^2), x)

________________________________________________________________________________________

Sympy [A]  time = 13.9834, size = 131, normalized size = 0.48 \begin{align*} f \left (\begin{cases} - \frac{1}{2 b \sqrt{a + b x^{4}}} & \text{for}\: b \neq 0 \\\frac{x^{4}}{4 a^{\frac{3}{2}}} & \text{otherwise} \end{cases}\right ) + \frac{c x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{3}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{5}{4}\right )} + \frac{d x^{2}}{2 a^{\frac{3}{2}} \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{e x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{3}{2} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

f*Piecewise((-1/(2*b*sqrt(a + b*x**4)), Ne(b, 0)), (x**4/(4*a**(3/2)), True)) + c*x*gamma(1/4)*hyper((1/4, 3/2
), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(5/4)) + d*x**2/(2*a**(3/2)*sqrt(1 + b*x**4/a)) + e*x**3
*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{f x^{3} + e x^{2} + d x + c}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/(b*x^4 + a)^(3/2), x)